

Mariosousa, a New Segregate Genus from *Acacia* s.l. (Fabaceae, Mimosoideae) from Central and North America

David S. Seigler

Department of Plant Biology, University of Illinois, Urbana, Illinois 61801, U.S.A.
seigler@life.uiuc.edu

John E. Ebinger

Emeritus Professor of Botany, Eastern Illinois University, Charleston, Illinois 61920, U.S.A.
jeebing@eiu.edu

Joseph T. Miller

Roy J. Carver Center for Comparative Genomics, Department of Biological Sciences, 232 BB, University of Iowa, Iowa City, Iowa 52242, U.S.A. jt-miller@uiowa.edu

ABSTRACT. Recent studies have shown that the genus *Acacia* Miller s.l. is polyphyletic, consisting of at least five distinct groups of species. One of these groups, the proposed genus *Mariosousa* Seigler & Ebinger, consists of 13 species. We have made the following new combinations: *Mariosousa acatensis* (Bentham) Seigler & Ebinger, *M. centralis* (Britton & Rose) Seigler & Ebinger, *M. compacta* (Rose) Seigler & Ebinger, *M. coulteri* (Bentham in A. Gray) Seigler & Ebinger, *M. dolichostachya* (S. F. Blake) Seigler & Ebinger, *M. durangensis* (Britton & Rose) Seigler & Ebinger, *M. mammifera* (Schlechtendal) Seigler & Ebinger, *M. millefolia* (S. Watson) Seigler & Ebinger, *M. russelliana* (Britton & Rose) Seigler & Ebinger, *M. salazarii* (Britton & Rose) Seigler & Ebinger, *M. sericea* (Martens & Galeottii) Seigler & Ebinger, *M. usamacintensis* (Lundell) Seigler & Ebinger, and *M. willardiana* (Rose in Vasey & Rose) Seigler & Ebinger. These species are restricted to tropical and subtropical regions of the southwestern United States, Mexico, and Central America. In addition to their close geographic affinities, a series of morphological characteristics, as well as recent molecular data, separate this new genus, which has been commonly referred to as the *Acacia coulteri* group. They are morphologically distinct from other species of *Acacia* subg. *Aculeiferum* Vassal in that they always lack prickles and are never lianas. Although this group of species is monophyletic, previous taxonomic treatments have not dealt with them as a separate unit within *Acacia* subg. *Aculeiferum*.

Key words: *Acacia coulteri* group, *Acacia* subg. *Aculeiferum*, *Acacia* sensu lato, Fabaceae, *Mariosousa*.

As presently defined, *Acacia* Miller is a cosmopolitan genus of more than 1350 species found throughout the tropical and subtropical regions of both the Old and New Worlds (Maslin et al., 2003). Placed in the tribe *Acacieae* within the subfamily Mimosoideae (Fabaceae), the genus has traditionally comprised three large subgenera: *Acacia* subg. *Acacia* (ca. 161 species), subgenus *Aculeiferum* Vassal (ca. 235 species), and subgenus *Phyllodineae* (DC.) Seringe (ca. 960 species). It has been suggested that the genus is polyphyletic, and within the past 35 years various classifications have been proposed that divided the genus into three genera, mostly corresponding to the three traditional subgenera (Vassal, 1972; Pedley, 1978, 1986). These proposals have not been widely accepted until recently. Most students of this genus have thought that more data were needed to make informed decisions concerning the generic status of *Acacia* (Maslin, 1988).

It is now generally agreed that the genus *Acacia* s.l. is polyphyletic. Also, there has been recent accumulation of data derived from morphological and molecular studies that has led to a better understanding of the probable relationships within the genus, as well as the position of the genus within the Mimosoideae (Maslin, 1988; Chappill & Maslin, 1995; Clarke, 1995; Clarke et al., 2000; Maslin et al., 2000, 2003; Miller & Bayer, 2001, 2003; Luckow et al., 2003). One result of these studies is that a small group of 13 species, commonly referred to as the *Acacia coulteri* group, should be placed in a separate genus.

RESULTS AND DISCUSSION.

The complex of about 235 species worldwide that are presently placed in *Acacia* subg, *Aculeiferum* Vassal (1972) (approximately the same as series

NOVON 16: 413–420. Published on 7 November 2006.
Vulcares Bentham (1875) can be divided into several informal species groups based on overall similarities of habit, stipule structure and persistence, presence or absence of prickles, presence or absence of short shoots, petiolar gland shape and structure, shape and venation of leaflets, and inflorescence structure (Jawad et al., 2000). At the present time, however, many of these informal groups within subgenses *Aculeiferum* have not been established to be monophyletic units, and have not been formally described. Most American species of this subgenus should be transferred to *Senegalia* Rafinesque (Pedley, 1978, 1980) or to *Acaciella* Britton & Rose (*Acacia* subg. *Aculeiferum* sect. *Filiicinace Pedley*). We have recently reviewed the status of American species of *Senegalia* (Seigler et al., 2006).

The taxa of another of the groups of phenetically similar species, the *Acacia coulteri* species group (Maslin & Stinton, 1997), herein described as a new genus *Mariosousa* Seigler & Elvinger, were recently revised using morphometric studies involving principal components analysis (Jawad et al., 2000). Taxis of this species group are unarmed, erect shrubs and small trees with persistent, herbaceous stipules, relatively unspecialized petiolar glands, and flowers in cylindrical spikes. Except for minor differences in flower size and pubescence, the flowers of these taxa are very similar. The 13 taxa of the *A. coulteri* group range from Arizona, south through Mexico into Costa Rica. They are morphologically distinct from other species of *Acacia* subg. *Aculeiferum* in that they always lack prickles and are never lianas. Although this species group appears to be monophyletic, previous taxonomic treatments have not dealt with these species as a separate unit within *Acacia* subg. *Aculeiferum* (Bentham, 1875; Standley, 1922; Britton & Rose, 1928).

Members of the *Acacia coulteri* group can be distinguished from those of *Senegalia* by the absence of prickles and the order of development of the earliest leaves (Vassal, 1972). Those of the *A. coulteri* group are pinnate, pinnate, and then bipinnate, whereas the first three leaves of *Senegalia* species are bipinnate or a single pinnate leaf followed by two bipinnate leaves (Vassal, 1972). *Vachellia* Wight & Arnott species produce two pinnate leaves followed by a bipinnate leaf (Vassal, 1972). *Acacia coulteri* group species can usually be distinguished from members of the genus *Acaciella* (formerly subg. *Aculeiferum* sect. *Filiicinaceae*) by the presence of petiolar nectaries, although they are sometimes missing in *Mariosousa salicaria* (Britton & Rose) Seigler & Elvinger and usually missing in *M. millefolia* (S. Watson) Seigler & Elvinger. The subterminal floral bracts of the *A. coulteri* group species are usually caducous, whereas those of genus *Acaciella* are usually persistent, even into fruiting condition in many species. The stamens of dried *A. coulteri* group specimens are tan, brown, or occasionally red-brown in color, whereas those of *Acaciella* species possess a characteristic brown-orange color. The rachis of many members of genus *Acacia* (former *Acacia* subg. *Phyllodineae*) is arilloate (Vassal, 1972), but not so in species of the *A. coulteri* group. Furthermore, many species of *Acacia* possess phyllodes (Maslin et al., 2003), whereas the leaves of all members of *A. coulteri* group are bipinnate, although the pinnae of *M. willardiana* (Rose in Vasey & Rose) Seigler & Elvinger leaves are dropped under dry conditions. The points of detachment can still be seen, however. Species of the *A. coulteri* group can be distinguished from *Vachellia* species by the absence of stipular spines and the presence of vegetative, although sometimes weakly scarious, stipules. The ovaries of *A. coulteri* group species are often stipitate, whereas those of genus *Vachellia* are usually subsessile or sessile. Members of the genus *Vachellia* have a true involucre on the peduncle; this feature is lacking in species of the *A. coulteri* group. Members of the *A. coulteri* group can usually be distinguished readily from members of the tribe Ingeae because the stamens of the former are free to the base, whereas those of Ingeae species are characteristically fused into a tube for a significant portion of the length of the filaments. The leaves of many members of the genus *Inga* Miller and one *Cajoba* Britton & Rose species are pinnately compound, whereas mature leaves of the *A. coulteri* group are uniformly bipinnate.

Previous DNA studies have shown that both the genus *Acacia* s.l. and *Acacia* subg. *Aculeiferum* s.l. are polyphyletic (Robinson & Harris, 2000; Clarke, 1995; Clarke et al., 2000; Miller & Bayer, 2000; Luckow et al., 2003; Miller et al., 2003; Seigler et al., 2006). Furthermore, although they were inadequately sampled in most of these studies, two groups of species within *Acacia* subg. *Aculeiferum* s.l., *Acaciella* (subg. *Aculeiferum* sect. *Filiicinaceae*) and species belonging to the *Acacia coulteri* group (Mariosousa), are distinct from a major part of the subgenus, which is now considered to comprise the genus *Senegalia* (Seigler et al., 2006).

In the present study, DNA from 34 vouchers representing 30 species of mimosoid legumes was sequenced for the chloroplast loci: matK, trnL intron, trnL-trnF intergenic spacer region. Sampling included representatives of the major lineages of *Acacia* s.l., including the genera *Senegalia* (*Acacia* subg. *Aculeiferum*, in part) (Seigler et al., 2006), *Vachellia* (formerly *Acacia* subg. *Acacioides*) (Seigler & Elvinger, 2005), *Acacia* (formerly *Acacia* subg. *Phyllodineae*),
Mariosousa (Acacia subg. Aculeiferum species related to the Acacia coulteri group), and Acaciella (subg. Aculeiferum sect. Filicinæa) (Britton & Rose, 1928), as well as A. risco Lorenz ex Grisebach, A. galpinii Burtt Davy, and several species of the tribe Ingeae. Mimosa tenuiflora (Willdenow) Poiret was used as the outgroup. African and Asian representatives that may be transferred to Vachellia and Senegalia in the future also are included (Table 1).

Maximum parsimony analyses were performed on the aligned sequences using the heuristic search option (excluding uninformative characters) in PAUP* 4.0 (Swofford, 1999). A four-step search method for multiple islands was performed using 10,000 random replicates (Olmsdell & Palmer, 1994). Support for internal branches was evaluated by using the fast bootstrap method with 1000 replicates (Felsenstein, 1985).

The heuristic analysis found 220 trees of 892 steps with a consistency index (CI) of 0.85 and a retention index (RI) of 0.80. A strict consensus tree with bootstrap support values is shown in Figure 1. The basal clade (Clade A) is Vachellia, which is supported by a bootstrap value of 100% and contains both American and African species. All species other than Vachellia plus Acacia tortilis (which we consider within Vachellia) are placed in a separate clade (Clade B, 67% bootstrap value). This confirms previous results that show Vachellia to be relatively distantly related to other Acacia s.l. taxa (Lückow et al., 2003; Miller et al., 2003).

The genus Senegalia (Clade C) is supported by a bootstrap value of 89% and is sister to the rest of the species examined. The remaining species are divided into two clades (Clades D and H).

Clade D is a monophyletic entity comprised of 10 samples of six species related to the Acacia coulteri group (Mariosousa) (68% bootstrap value). This clade can be subdivided into two subclades E and F. Clade E (60% bootstrap value) is comprised of M. willardiana (S. F. Blake) Seigler & Ebinger and M. salazarii (Landell) Seigler & Ebinger, whereas Clade F (91% bootstrap value) contains the remaining species. Multiple samples of M. dolichostachya and M. usamancinensis are placed in an unresolved polytomy (Clade G, 63% bootstrap value). The final major clade (Clade H) contains species of tribe Ingeae, Acacia (formerly subg. Phyllodinae), Acaciella, and two taxa of Acacia subg. Aculeiferum, A. risco and A. galpinii, that as of the present have unclear relationships. Of these, Acaciella plus Acacia boliviana (which we consider within Acaciella) is monophyletic (Clade I, 100% bootstrap value). The combined Ingeae/Acacia clade (Clade J) is poorly supported (51% bootstrap value). However, the two species of Acacia (formerly subg. Phyllodinae) form a strongly supported clade (93% bootstrap value) within Clade J and are monophyletic.

In summary, increased sampling confirms previous results that suggested monophyly of the group of species related to the Acacia coulteri group (Mariosousa) and, furthermore, suggests two lineages within this genus.

Description of the Genus

Mariosousa Seigler & Ebinger, gen. nov. TYPE: *Mariosousa coulteri* (Bentham) Seigler & Ebinger [= Acacia coulteri Bentham in A. Gray, PI. Wright, 1: 66. 1852].

Frutices et arbres parvae, inermes, ramulis non flexuosis; stipulas persistentes, herbeæae; rachis saepe supra canaliculatus; glandulae prope basim petalorum, etiam inter-juga aliique inarticulatae; foliola parva, 1 ad 4-juga, linearia vel oblonga, obliqua; flores pentameri, abolo-luteo, sessiles, in spicis cylindricis; stamina distincta, interdum ultra 50; leguminæ sincrenæ, dehiscencia, oblongo-linearis, compressa; acini complanati, glabri.

Unarmed shrubs and trees; twigs usually not flexuous; short shoots usually absent. Leaves alternate, bipinnately compound; stipules herbaceous, narrowly triangular to linear, persistent; petioles mostly adaxially grooved; petiolar glands small, mostly solitary (rarely absent); rachis usually adaxially grooved with a small gland between the upper 1 or 2 pinna pairs; pinnae 1 to 4 pairs per leaf, mostly with numerous leaflets (4 to 65 pairs); leaflets small (mostly less than 10 mm long), opposite, linear to oblong, the base oblique, Inflorescence a cylindrical spike; involucre absent; floral bracts linear, early deciduous. Flowers sessile, creamy white; the tubular calyx and corolla each 5-lobed; stamens numerous (50+), separate; the stipitate ovary usually glabrous. Legumes straight, flattened, oblong, lacking pulp, dehiscence, transversely to irregularly striate, with a distinct stipe. Seeds uniseriate, strongly flattened, smooth, usually with a large U-shaped pleurogram covering 50%–70% of the seed.

Etymology. *Mariosousa* honors Mario Sousa, former Director of the Herbarium of the Instituto de Biología (MEXU), Universidad Autónoma de México, who has done extensive work in *Acacia* systematics, directed the research of a number of students in this area, and collected many specimens of this genus.

Detailed descriptions, geographic distribution, and representative specimens of all species can be found in Jawad et al. (2000).
Table 1. Species used in this study. Genbank numbers are for the MatK and trnL chloroplast DNA regions. The species Acacia boliviana, A. galpinii, A. schweinfurthii, A. tortilis, and A. ruscig should be considered as members of Acacia s.l.

<table>
<thead>
<tr>
<th>Taxonomic grouping</th>
<th>Species</th>
<th>Voucher/collector</th>
<th>Genbank accessions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acacia subg. Aculeiferum Acacia coulteri group</td>
<td>Mariossaus acaulis</td>
<td>DS16026</td>
<td>DQ371390, DQ371374</td>
</tr>
<tr>
<td>Acacia subg. Aculeiferum Acacia coulteri group</td>
<td>Mariossaus coulteri</td>
<td>DS15933</td>
<td>DQ371393, DQ371368</td>
</tr>
<tr>
<td>Acacia subg. Aculeiferum Acacia coulteri group</td>
<td>Mariossaus dolichostachya</td>
<td>DS16035</td>
<td>DQ371392, DQ371366</td>
</tr>
<tr>
<td>Acacia subg. Aculeiferum Acacia coulteri group</td>
<td>Mariossaus dolichostachya</td>
<td>DS16044</td>
<td>DQ371395, DQ371367</td>
</tr>
<tr>
<td>Acacia subg. Aculeiferum Acacia coulteri group</td>
<td>Mariossaus dolichostachya</td>
<td>DS16040</td>
<td>DQ371394, DQ371367</td>
</tr>
<tr>
<td>Acacia subg. Aculeiferum Acacia coulteri group</td>
<td>Mariossaus salazarii</td>
<td>DS15973</td>
<td>DQ371383, DQ371365</td>
</tr>
<tr>
<td>Acacia subg. Aculeiferum Acacia coulteri group</td>
<td>Mariossaus salazarii</td>
<td>DS15953</td>
<td>DQ371397, DQ373803</td>
</tr>
<tr>
<td>Acacia subg. Aculeiferum Acacia coulteri group</td>
<td>Mariossaus asamavintensis</td>
<td>DS15950</td>
<td>DQ371391, DQ371364</td>
</tr>
<tr>
<td>Acacia subg. Aculeiferum Acacia coulteri group</td>
<td>Mariossaus asamavintensis</td>
<td>DS16045</td>
<td>DQ371389, DQ371363</td>
</tr>
<tr>
<td>Acacia subg. Aculeiferum Acacia coulteri group</td>
<td>Mariossaus willardiana</td>
<td>DLEG 89-09143</td>
<td>AY396896, DQ371462</td>
</tr>
<tr>
<td>former subg. Acacia</td>
<td>Acacia tortilis (Foesskhal Hayne)</td>
<td>CANB 615965</td>
<td>AFS24440, AFS22977</td>
</tr>
<tr>
<td>former subg. Acacia</td>
<td>Vachellia campechiana (Miller) Seigler & Elbing</td>
<td>CANB 615857</td>
<td>AFS24433, AY574143</td>
</tr>
<tr>
<td>former subg. Acacia</td>
<td>Vachellia collinsii (Salford) Seigler & Elbing</td>
<td>DS16038</td>
<td>DQ371385, DQ371387</td>
</tr>
<tr>
<td>former subg. Acacia</td>
<td>Vachellia coriacea (L.) Seigler & Elbing</td>
<td>DS16089</td>
<td>DQ371386, DQ373804</td>
</tr>
<tr>
<td>former subg. Acacia</td>
<td>Vachellia schottii (Torrey) Seigler & Elbing</td>
<td>CANB 615389</td>
<td>AFS24436, AFS22971</td>
</tr>
<tr>
<td>former subg. Acacia</td>
<td>Vachellia vernicosa (Britton & Rose) Seigler & Elbing</td>
<td>CANB 615605</td>
<td>AFS23113, AFS22970</td>
</tr>
<tr>
<td>former subg. Phyllodineae</td>
<td>Acacia leucophloia A. Cunningham ex Hooker</td>
<td>CANB 615646</td>
<td>DQ371389, AF195705, AF195686</td>
</tr>
<tr>
<td>former subg. Phyllodineae</td>
<td>Acacia melanoxylon R. Brown</td>
<td>CANB 615636</td>
<td>AFS24466, AF195699, AF195681</td>
</tr>
<tr>
<td>subg. Aculeiferum</td>
<td>Acacia galpinii</td>
<td>CANB 615736</td>
<td>AFS23998, AFS22983</td>
</tr>
<tr>
<td>subg. Aculeiferum</td>
<td>Acacia ruscig</td>
<td>CANB 615607</td>
<td>AFS23116, AFS22982</td>
</tr>
<tr>
<td>subg. Aculeiferum</td>
<td>Acacia schweinfurthii Bremnan & Exell</td>
<td>CANB 615609</td>
<td>AFS23110, AFS22979</td>
</tr>
<tr>
<td>subg. Aculeiferum</td>
<td>Senegalia senegal (L.) Britton & P. Wilson</td>
<td>CANB 615554</td>
<td>AFS24413, AF195700, AF195681</td>
</tr>
<tr>
<td>subg. Aculeiferum</td>
<td>Senegalia guarneri (Blake) Britton & Rose</td>
<td>DS16042</td>
<td>DQ371389, DQ371358</td>
</tr>
<tr>
<td>subg. Aculeiferum</td>
<td>Senegalia roemertiana (Scheele) Britton & Rose</td>
<td>CANB 615605</td>
<td>AFS23099, AFS22977</td>
</tr>
<tr>
<td>subg. Aculeiferum</td>
<td>Senegalia wrightii (Benthman) Britton & Rose</td>
<td>BLEG 90044</td>
<td>AFS24471, DQ731894</td>
</tr>
<tr>
<td>subg. Aculeiferum sect. Filicinieae</td>
<td>Acacia angustissima (Miller) Britton & Rose</td>
<td>DS15993</td>
<td>DQ371887, DQ731872</td>
</tr>
<tr>
<td>subg. Aculeiferum sect. Filicinieae</td>
<td>Acacia boliviana Rushy</td>
<td>CANB 615555</td>
<td>AFS24414, AFS22981</td>
</tr>
<tr>
<td>Ingeac</td>
<td>Albizia lebbeck (L.) Bentham</td>
<td>DLEG 95.0005</td>
<td>DQ373905, DQ371375</td>
</tr>
<tr>
<td>Ingeac</td>
<td>Bauharia pellata (Benthman) Britton & Rose</td>
<td>CANB 615357</td>
<td>AFS244125, AFS22955</td>
</tr>
<tr>
<td>Ingeac</td>
<td>Inga edulis Matius</td>
<td>MEL 209667</td>
<td>AFS23973, AFS22974</td>
</tr>
<tr>
<td>Ingeac</td>
<td>Parkinsonia praemorsum Koorders</td>
<td>CANB 615349</td>
<td>AFS244127, AFS22964</td>
</tr>
<tr>
<td>Ingeac</td>
<td>Parkinsonia lophanta (Willdenow) L.C. Nielsen</td>
<td>CANB 615350</td>
<td>AFS244128, AFS22962</td>
</tr>
<tr>
<td>Ingeac</td>
<td>Zapoteca tetragonis (Willdenow) H. M. Hernandez</td>
<td>CANB 615626</td>
<td>AFS23097, AFS22966</td>
</tr>
<tr>
<td>Minoscac</td>
<td>Mimosa tenella</td>
<td>CANB 615414</td>
<td>AFS24420, AFS22943</td>
</tr>
</tbody>
</table>
KEY TO THE SPECIES OF Mariosousa IN CENTRAL AND NORTH AMERICA

1a. Pinnate mostly with more than 36 pairs of leaflets, especially those near the middle of the rachis.
2a. Petiolar gland(s) flattened, usually located on the lower third of the petiole; leaflet apex obtuse to broadly acute.
3a. Leaflets 1.2-1.9 mm wide; leaves with more than 6 pairs of pinnate 12. M. asamaitensis
3b. Leaflet mostly less than 1.2 mm wide; most leaves with 6 or fewer pairs of pinnate 5. M. dolichostachya
2b. Petiolar gland(s) saucer-shaped to cup-shaped, usually located on the upper half of the petiole; rarely absent; leaflet apex narrowly acute to acuminate.
4a. Minute purple glands common at the base of the leaflet and usually along the rachis; leaflets lacking long hairs on the lower side at the base 1. M. acalensis
4b. Minute purple glands absent; leaflets usually with long hairs on the lower side at the base 2. M. centralis
1b. Pinnate mostly with fewer than 36 pairs of leaflets, or pinnate absent.
5a. Leaves less than 30 mm long, some clustered on short shoots 3. M. compacta
5b. Leaves more than 30 mm long, short shoots absent; pinnae sometimes absent in Acacia willardiana.
6a. Leaflets appressed to erect-pubescent on both surfaces, usually densely so minute purple glands common on the rachis and petiole rachises.
7a. Petiole and rachis densely pubescent with erect hairs about 0.3 mm long; petiolules less than 2.1 mm long; fruit pubescent 11. M. sericea
7b. Petiole and rachis glabrous or with short, appressed hairs; petiolules more than 2.1 mm long; fruit glabrous.
8a. Petiolar glands raised, the apex bulbous; most leaves with fewer than 7 pairs of pinnate 3. M. massivea
8b. Petiolar glands sessile and with an irregularly raised apex; most leaves with more than 10 pairs of pinnate 6. M. durangoensis
9a. Leaves mostly with a single pair of pinnate (rarely 2 or 3); many petioles more than 100 mm long
9b. Leaves mostly with 4 or more pairs of pinnate; petioles less than 70 mm long.
10a. Rachis gland between the upper pinna pair stalked, with a globose apex; shrub or small tree less than 4 m tall
10b. Rachis gland between the upper pinna pair sessile, usually saucer-shaped, cup-shaped, or absent; large shrub or tree, more than 4 m tall.
11a. Bark of trunk and larger branches exfoliating and papery; petiolar glands absent on many petioles; leaflet apex acuminate 10. M. salazarii
11b. Bark of trunk and larger branches smooth to furrowed, not exfoliating; petiolar glands present; leaflet apex broadly acute to obtuse.
12a. Leaflets appressed pubescent beneath; rachis and pinna rachises pubescent above; perianth pubescent 4. M. couleri
12b. Leaflets glabrous beneath; rachis, pinna rachises, and perianth glabrous or nearly so 9. M. russelliana

Britton and Rose (1928) listed the type as Gonzatti 25,346. On the NY isotype, Britton wrote “the number of this specimen was erroneously printed 25,346.”

Figure 1. Strict consensus tree of 220 most parsimonious trees from the matK and trnL combined datasets. Bootstrap values are above branches. Refer to text for discussion of the clades labeled (A–J). The names *Acacia boliviana*, *A. galpinii*, *A. schweinfurthii*, *A. tortilis*, and *A. visco* should be considered as members of *Acacia* s.l.

The description of *Acacia coulteri* in Rico-Arce and Rodriguez (1993) and Rico-Arce (2001) clearly corresponds to *A. salazarii* (now *Mariosousa salazarii*) in Jawad et al. (2000) and the present work. *Mariosousa coulteri* (A. coulteri) does not fall within the geographic or morphological range of *M. salazarii*.

Because of the recent conservation of the type for *Acacia* with an Australian species, the desirability and timeliness of transferring species of the former subgenus *Aculeiferan* to a new genus *Mariosousa*, the fact that the name *Acacia willardiana* Rose has been used for this species by most workers and that name is widely employed in floras of Mexico, and in order to contribute to nomenclatural stability, we have made a proposal to conserve the name *A. willardiana* Rose in Vasey and Rose (1890). If accepted, the name for this taxon must become *Mariosousa willardiana* (Rose) Seigler & Ebing.

Acknowledgments. We acknowledge support by the National Science Foundation (NSF BSR 82-15274, NSF-PCM 82-17114, NSF 04-15303), United States Department of Agriculture (OICD 58-319R-0-011), The American Philosophical Society (DSS 1992), the University of Illinois Research Board (1994, 2001), and the Rupert Barnely Award by the New York Botanical Garden in 1997. We thank the curators of the many herbaria who sent specimens.

Literature Cited

